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Abstract
In the simplest configurations a solution of a partial differential equation
with a Robin boundary condition can be generated from a solution of the
corresponding Dirichlet problem. In more general cases similar reasoning can
be adapted to construct an approximate solution as a sum over classical paths,
which may suffer delayed reflection at the boundary. This analysis provides a
new approach to spectral densities and vacuum energy densities. A quantum
graph is a network of one-dimensional domains joined at vertices, at which,
typically, a close analogue of the Robin boundary condition applies. Our
techniques, therefore, apply to such models.

PACS numbers: 02.30.Jr, 03.65.Sq, 03.70.+k, 11.10.Kk

The research described here has been, or will be, reported in detail in [5, 15, 16]. It stands
within the ‘classic’ paradigm of Casimir calculations. Physical limitations of that paradigm
were noted long ago ([10] and related papers by Candelas) and in recent conferences in this
series [2, 17]. Such issues are largely irrelevant to the present paper but occasionally need to
be recalled to forestall overinterpretation of the mathematical results.

1. The Robin boundary condition

The Robin, or generalized Neumann, condition is

∂u

∂n̂in
= αu on the boundary ∂� (1)

for a second-order linear partial differential equation in a domain of the form � ×
{time interval}, such as

i
∂u

∂t
= Hu,

∂2u

∂t2
= −Hu, . . . . (2)
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Here H may be the Laplacian −∇2 or some more complicated self-adjoint operator. Negative
values of α are permissible, but α(x) � 0 is the more physical situation and all that will be
treated here.

For example, a one-dimensional wave equation with such a boundary condition describes
a vibrating string attached to a discrete massless spring with a Hooke constant α. The energy
of such a system is

1

2

∫ L

0

[(
∂u

∂t

)2

+

(
∂u

∂x

)2
]

dx +
α

2
u(0)2. (3)

The two terms are not separately conserved; the boundary absorbs and emits energy! This
fact gives the second-quantized theory a nonlocal character in time that distinguishes Robin
boundaries from ordinary Dirichlet and Neumann boundaries.

2. The Dirichlet–Robin transform

The work reported in this section was done in collaboration with a graduate student, Joel
Bondurant [5]. The key idea is to invert the operator T ≡ ∂

∂n̂
− α to reduce a Robin problem

to a Dirichlet problem. This tactic works perfectly in the easy cases, where T has an obvious
extrapolation into the interior of � that commutes with H.

More specifically, let us make the three assumptions that H has constant coefficients and
α = constant on a flat boundary. (Let � be the half-space {x ≡ (x, x⊥): 0 < x < ∞, x⊥ ∈
Rd−1}, ∂� = {(0, x⊥)}.) Then, if v solves the Dirichlet problem (for ∂2u

∂t2 = ±Hu or some
such equation)

u(x, t) ≡ T −1v(x, t) ≡ −
∫ ∞

0
e−αεv(x + ε, x⊥, t) dε (4)

solves the corresponding Robin problem. (In fact, it can be defined as the unique solution of
slow growth at x → +∞).

As a corollary, it can be seen that whenever the Dirichlet and Neumann problems can be
solved by the textbook method of images

GN

D
(x, x⊥, y, y⊥) = G(x − y, x⊥ − y⊥) ± G(x + y, x⊥ − y⊥), (5)

then (because, in operator language, GR = T −1GDT ) the Robin Green function is

GR(x, x⊥, y, y⊥) = GN + 2αT −1
x G(x + y, x⊥ − y⊥). (6)

This formula enables us to solve all the standard half-space problems with Robin condition.
(In the present notation, the condition is

∂u

∂x
(t, 0, x) = αu(t, 0, x), (7)

which will not be repeated in each example below.)

2.1. Wave equation (spatial dimension 1)

Consider the problem

∂2u

∂t2
= ∂2u

∂x2
, u(0, x) = f (x),

∂u

∂t
(0, x) = 0. (8)
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Applying (6) to the well-known d’Alembert solution yields (after discarding terms that vanish
for t > 0)

u(t, x) = 1
2 [f (x − t) + f (x + t) + f (t − x)] − αθ(t − x)

∫ t−x

0
e−αεf (t − x − ε) dε (9)

= (Neumann echo) + (delayed ringing).

2.2. Schrödinger equation (and classical paths)

For

i
∂u

∂t
= −∂2u

∂x2
− ∇2

⊥u, u(0, x) = f (x), (10)

the method yields

GR = (transverse free propagator)

{
(Neumann term) − 2α

√
t√

4π i

∫ ∞

vmin

e−αuv eiS dv

}
, (11)

where v can be identified as the speed of the particle,

u ≡ t − x + y

v
(12)

is the time delay experienced when the particle reflects from the boundary, and

S ≡ 1
4 [v(x + y) + v2u] (13)

has the natural interpretation as the total action of the path (more precisely, of its restriction
to the (t, x) plane). For every choice of (t, x, y) there exists (in addition to the direct path) a
family of classical trajectories parametrized by v that start at (0, y) and end at (t, x) after a
visit to the boundary; vmin = (x + y)/t corresponds to reflection with no delay.

2.3. Heat equation

In this case our main result (and, in a sense, our method) was anticipated in 1891 [7]. Suffice
it to say that as a corollary we find the contribution of α (undifferentiated, and not combined
with boundary curvature) to the heat-kernel expansion to all orders. The results agree with
[6, 11], and with [1, 26] where their scopes overlap.

2.4. Vacuum energy

We implement an exponential ultraviolet cutoff by solving

∂2u

∂t2
= −∇2u, u(0, x) = f (x), lim

t→+∞ u(t, x) = 0. (14)

(This is equivalent to inserting the factor e−tωj into mode sums—integrals in this case.) The
energy density (for the value ξ = 1

4 of the conformal coupling) is formally given by

T 00(x) = −1

2
lim
t→0

∂

∂t
GR(t, x, x). (15)

Of course, the limit does not exist; instead, the quantity (15) has a small-t asymptotic expansion
including negative powers of t (and sometimes a logarithm). Following standard procedure,
we define the renormalized energy density as the limit after these divergent terms have been
discarded. (For energy densities in locally flat space, the only such term is the ubiquitous
zero-point energy of infinite flat space.) In other words, T 00

ren is the coefficient of the t1 term in
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the small-t expansion of GR(t, x, x). It consists of the term that would be present for a pure
Neumann boundary plus a Robin correction expressible in terms of the exponential-integral
(or incomplete 	) function. The short-distance behaviour in dimension d is

T 00
ren ∼ O(x−(d+1)) + αO(x−d) + · · · . (16)

The same result was obtained by Romeo and Saharian [25] by a different method (explicit
eigenfunctions and modewise vacuum subtraction).

3. More complicated problems; slabs

The bad news is that there is no exact, global Dirichlet-to-Robin transform when the three
assumptions listed above do not hold. (This should be obvious, since GR = T −1GDT would
imply that the problems had the same spectrum.)

But (as suggested by the structure of the foregoing examples) we can hope to exploit the
locality of the interaction to construct an approximate, infinite-series solution as a sum over
classical paths. The example worked out in [5] is the wave equation on an interval with a
Robin boundary at the left and a Dirichlet boundary at the right. It proved possible to evaluate
in a closed form the integrals over the exponential delay tails at the Robin end, repeatedly
compounded by multiple reflections.

In [5] we did not consider vacuum energy for the finite interval, but currently another
graduate student, Zhonghai Liu, and I are calculating the vacuum energy (and energy density)
in a slab of arbitrary dimension with at least one Robin boundary surface [16]. The multiple-
reflection analysis continues to apply. The case with one Robin and one Dirichlet ‘plate’ is
nearly completed. For the energy density (with ξ = 1

4 ), we have verified that the periodic
paths give a spatially constant Casimir energy, while the bounce paths (closed but not periodic)
produce the behaviour (16) at each end, as expected (for example, from the classic work of
Deutsch and Candelas [10]). On the finite interval, one can (and we shall) apply the same
cutoff and renormalization procedure to the total energy, obtaining (by definition) a finite
result of the sort expected from the similar literature [4, 13, 14, 18]. (It is notorious that
this renormalized total energy is not the spatial integral of the renormalized density, which
is infinite. Presumably, the fault is on both sides: the singularities in the density would go
away if the idealized boundary were replaced by a realistic model of a material with atomic
structure, and some of the cutoff-dependent terms in the total energy, rather than being thrown
away, should be absorbed into (nonzero and possibly large) terms describing the boundary
material itself.) When our work is complete, the results will presumably agree with those of
[25] but will be independent of them (being path sums, not (complicated) integral formulae).

4. Quantum graphs

A quantum graph combines the features of one-dimensional and multi-dimensional systems.
It is a system of vertices with attached edges, some of which may extend to infinity:

(17)
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On each edge the free Schrödinger equation holds,

− d2

dx2
e

u = ω2u. (18)

At each vertex, u is continuous and a generalized Kirchhoff condition holds,∑
e

du

dxe
= αu(v). (19)

(This is a somewhat restricted definition of ‘quantum graph’. Other edge operators and other
vertex boundary conditions are also studied in the literature.)

Note that a quantum graph is a metric graph, not a combinatorial graph where the edges
are inert and the Hamiltonian is a discrete Laplacian acting on the vertices [8]:


u(v) ≡ (const)u(v) −
∑

neighbours

u(vn). (20)

Quantum graphs are the focus of growing interest [19–23]. They have applications in
modelling thin three-dimensional structures (quantum wires) [21]; in symbolic dynamics for
wave propagation in piecewise homogeneous media [9]; in modelling lungs, veins, etc (see
various papers presented at the Snowbird conference [3]). Finally, they show some promise
in modelling multi-dimensional (continuum) quantum-mechanical systems [24, 12]. A linear
quantum graph

(21)

is equivalent to the one-dimensional Schrödinger equation with V (x) = α
∑

j δ(x − j).
Higher dimensions can be partially discretized by, e.g., a rectangular grid.

4.1. An infinite star graph

Take a graph with one vertex and N infinite edges, and bundle all its edges together:

(22)

Its Schrödinger equation is clearly equivalent to that for a multicomponent wavefunction
defined on a half-line,

u = {uj (x)} ∈ L2(0,∞)N . (23)

Here, the Hamiltonian is just H = − d2

dx2 with the boundary conditions

uj (0) = u(0) (i.e., is independent of j ), (24)

N∑
j=1

u′
j (0) = αu(0). (25)

The old Robin problem of previous sections is just this with N = 1.
In analogy with those sections, one finds [15] the Dirichlet-to-Robin formulae

(T −1v)j (x) = 1

α

[
1

N

N∑
k=1

vk(x) − vj (x)

]
− 1

N2

∫ ∞

x

e−α(s−x)/N

N∑
k=1

vk(s) ds, (26)
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GSj
l(t, x, y) = δl

jG(t, |x − y|) +

(
2

N
− δl

j

)
G(t, x + y) − 2α

N2

∫ ∞

0
e−α(s−x)/NG(t, s + y) ds.

(27)

Here GSj
l is the matrix Green function on the graph, and G(t, z) is the corresponding (scalar)

Green function on the real line.

4.2. Vacuum energy on a quantum graph

Here we study the graph as an abstract bosonic system, with no pretensions to modelling a
structure in a three-dimensional space. For the vacuum energy problem

(
∂2u
∂t2 + ∂2u

∂x2 = 0
)
, one

has

G(t, z) = t/π

t2 + z2
, (28)

and hence from (27)

GSj
l = δl

j

t/π

t2 + (x − y)2
+

(
2

N
− δl

j

)
t/π

t2 + (x + y)2

+
2α

πN2
eα(x+y)/N Im

[
e−iαt/N Ei

(
iαt

N
− α

N
(x + y)

)]
. (29)

Proceeding from (15) as before, we obtain [15]

T 00
ren(x) =

(
1 − 2

N

)
1

8πx2
+

α

2πN2x
+

α2

πN3
e2αx/N Ei

(
−2αx

N

)
. (30)

An instructive alternative calculation uses GSj
l for the wave equation to find (as its inverse

cosine transform) the local spectral density

ρSj
j (ω, x, x) = 1

π
+

1

π

(
2

N
− 1

)
cos(2ωx) +

2α/π

α2 + N2ω2

[
ω sin(2ωx) − α

N
cos(2ωx)

]
.

(31)

Then we can compute the ‘mode sum’ for T 00
ren from

ρSj
j (ω, x, x) − 1

π
. (32)

The results are consistent, of course.
Finally, let us examine the formulae for their physical significance (within the model). In

the infinite star graph one sees only boundary effects. At short distance, the Kirchhoff (i.e.,
α = 0,

∑
u′

j (0) = 0) term dominates:

T 00(x) ∼
(

1 − 2

N

)
1

8πx2
+

α

2πN2x
+

α2

πN3
ln|αx| + O(α2x2). (33)

At large distance, the energy density is almost pure Dirichlet (by which one means the case
α → +∞, uj (0) = 0 for all j ),

T 00(x) ∼ 1

8πx2
+ O(α−1x−3). (34)

True Casimir energies will appear when a finite star graph is studied.
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